
Memory Controller: Page Operations 1

Benjamin Kalytta Revision: 0.3

Memory Controller: Page Operations
Abstract: This is a short description of possible memory controller extensions. This is a

 modification of the old usenet article below.

Author: Benjamin Kalytta (benjamin@kalytta.com)

Url: http://www.kalytta.com

Date: November 2008, based on original idea of March 2004

Revision: 0.4

Further discussion about this topic can be found in alt.os.development newsgroup

(http://groups.google.de/groups/search?q=kalytta+pset)

http://www.kalytta.com/
http://groups.google.de/groups/search?q=kalytta+pset

Memory Controller: Page Operations 2

Benjamin Kalytta Revision: 0.3

Figure 1: PSET Operation ... 4

Figure 2: Memory read request .. 5

Figure 3: Memory write request ... 5

Figure 4: Cache before PSET is still empty .. 6

Figure 5: After first PSET iteration ... 6

Figure 6: After second PSET iteration .. 6

Figure 7: After PCPY operation .. 7

Memory Controller: Page Operations 3

Benjamin Kalytta Revision: 0.3

1 Scope
This document describes possible extensions for hardware based memory controllers in x86 based

system architecture. These extensions are namely page fill and page copy operations.

Most modern operating systems require that new allocated memory regions are zeroed for security

reason before usage. Zeroing of unused memory regions is mostly done in background or on memory

request. Zeroing is a significant sink of processor resources even by using SIMD instruction optimized

code. Above all it is a very stupid operation which shouldn’t be performed by the CPU. Another kind

of often used operation is memory region copy, especially copy-on-write operations. Copy-on-write

is often used in process creation operation to map dynamic libraries and certain data regions into

new process space. As soon as this region is modified (written to) this region need to be copied to a

new location.

The idea is, to outsource some operation to the memory controller which is integrated in modern

central processing units like AMD Athlon 64™ and Intel “Nehalem” Architecture which guarantees

low latencies.

1.1 Terminology
Description of some abbreviations used in this document.

Unit Smallest by memory controller addressable unit i.e. 4KiB. Unit size may be
changeable by the CPU for example to support various kinds of page translation
mechanisms.

Copy-On-Write Is a mechanism to support delay time copy. Memory region will not be copied
until first time it is written to it

CPU Central Processing Unit

MCOC Memory Controller Operation Cache

Memory Controller: Page Operations 4

Benjamin Kalytta Revision: 0.3

2 Operations
Memory controller operations need to be accessible by the CPU in some way. This can be done by

either through some memory mapping mechanism or by adding new CPU instructions. I’ll discuss the

later one and will call them PSET and PCPY. These operations perform on one unit. They should be

implemented as non privileged instructions and should perform on logical addresses instead of

physical memory addresses. Access to memory pages is restricted by usual way through various

supported memory address translation and protection mechanisms (Paging, Protected Mode).

2.1 PSET
Start memory controller bus transaction and fill specified page with value which is specified either in

CPU register or as immediate value. Filling more than one page requires multiple calls of PSET.

Memory addresses should be a multiple of the memory controller unit boundary, if not address will

automatically be rounded down to next unit boundary.

Mnemonic Description

PSET mem, imm Zeroing page at address [mem], Fill value is specified in immediate value

PSET mem, reg Zeroing page at address [mem], Fill value is specified in register

The memory controller contains a kind of n-way associative cache (Memory Controller Operation

Cache) to store each PSET operation requests. This cache will save the address of the operation, the

kind of operation and various operations specific parameters like the fill pattern. This data stays in

this cache as long as the operation is not completed. If during that time a memory read request to

one of the addresses in cache is made, the memory controller can answer this request without any

delay. It is not required to read some datum from memory. However if a write request is made

before the operation is completed, the write request will be delayed.

PSET

MCOC HIT

YES

INSERT

PSET

OPERATION

NO

KIND OF

OPERATION

UPDATE

PSET

PATTERN

CONTINUE

EXECUTION

SAME PATTERN

PSET

NO YESCANCEL

PCOPY

OPERATION

PCOPY

Figure 1: PSET Operation

Memory Controller: Page Operations 5

Benjamin Kalytta Revision: 0.3

READ MEMORY

PSET

CACHE HIT

FORWARD

REQUEST

NO

READ FROM

RAM

YES
RETURN

PATTERN

Figure 2: Memory read request

WRITE MEMORY

PSET

CACHE HIT

NO
WRITE TO

RAM

YES

WAIT FOR

OPERATION

COMPLETED

Figure 3: Memory write request

2.1.1 Advantages

The advantage of this operation is that filling (zeroing) memory operation is not done by CPU any

more but by the memory controller. Each memory read request will also be answered soon without

typical access latency of reading from DDR RAM.

2.2 PCPY
Start memory controller bus transaction to copy a memory page.

Mnemonic Description

PCPY mem, reg Copy page specified as indirect memory addresses

Internally the memory controller knows two PCPY operations. One stores the address to copy from

(PCPY FROM) the other one stores the destination address of the page to be copied to (PCPY TO). See

Example below.

Memory Controller: Page Operations 6

Benjamin Kalytta Revision: 0.3

2.3 Examples
This example shows a PSET operation which fills 2 page units with value 0xFFEEDDCC at start address

0x10000000 followed by a PCPY operation to copy 1 page unit from address 0x20000000 to

0x10002000. We assumes a 32 bits x86 architecture with a page unit size of 4 KiB.

 MOV EDI, 0x10000000

 MOV EAX, 0xFFEEDDCC

 MOV ECX, 2

LFILL:

 PSET [EDI], EAX

 ADD EDI, 0x00001000

 DEC ECX

 JNZ LFILL

 …

 MOV ESI, 0x20000000

 PCPY [EDI], ESI

In this example we assume that each memory controller can access no more than 232 logical memory

addresses and has an full associative MCOC which results in 1048576 required cache lines. Each

cache line is responsible for 4096 bytes of data (one page unit). One page line could be very small

since the only data saved is the operation (PSET/PCOPY) and operation specific data like fill pattern

or source address and may be some flags i.e. “is locked”. Say 5 bytes are required per cache line.

Tag Operation Data

...

0x10000

0x10001

0x10002

0x10003

...

0xFFFFF

0x00000

Figure 4: Cache before PSET is still empty

Tag Operation Data

...

0x10000 PSET 0xFFEEDDCC

0x10001

0x10002

0x10003

...

0xFFFFF

0x00000

Figure 5: After first PSET iteration

Tag Operation Data

...

0x10000 PSET 0xFFEEDDCC

0x10001

0x10002

0x10003

...

0xFFFFF

0x00000

PSET 0xFFEEDDCC

Figure 6: After second PSET iteration

Memory Controller: Page Operations 7

Benjamin Kalytta Revision: 0.3

Tag Operation Data

...

0x10000 PSET 0xFFEEDDCC

0x10001

0x10002

0x10003

...

0xFFFFF

0x00000

PSET

PCPY FROM

0xFFEEDDCC

0x20000000

0x20000 PCPY TO 0x10002000

...

Figure 7: After PCPY operation

You will notice that there are 2 PCPY operations; one specifies the source and the other the

destination address. This is important in case when to one of this address is written to before PCPY

FROM is executed.

Consider following cases:

a. A write request is made to address 0x10002000 before the PCPY operation is executed

b. A write request is made to address 0x20000000 before the PCPY operation is executed

c. A PSET/PCPY request to address 0x20000000 is made before the PCPY operation is executed

d. A PSET/PCPY request to address 0x10002000 is made before the PCPY operation is executed

e. A read request is made to address 0x10002000 before the PCPY operation is executed

Case a. is the typical copy-on-write case where a shared page is modified by another process or

thread.

…

MOV ESI, 0x20000000

PCPY [EDI], ESI

…

MOV [EDI], 0

In this case we need to copy page at source address 0x20000000 to 0x10001000 first before we can

continue. This source address is stored as operation specific data in the operation cache. To prevent

that any modification is made to both of the cache lines during execution the cache lines will be

locked until page is copied. After that the PCPY operations will be removed from both cache lines.

Case b. is the case where the source page has been modified before it has been copied.

…

MOV ESI, 0x20000000

PCPY [EDI], ESI

…

MOV [ESI], 0

The last MOV instruction will start the PCPY operation in this case because this operation was still

queued.

Memory Controller: Page Operations 8

Benjamin Kalytta Revision: 0.3

Case c. is similar to case b. because we try to write to an address whose page has not been copied

yet.

 …
MOV ESI, 0x20000000

PCPY [EDI], ESI

…

PSET [ESI], 0

The PCPY operation needs to be executed first before PSET can be queued.

The last case d. is uncritical. The page 0x20000000 has not been copied yet to 0x10002000 but since

PSET will fill the entire page this PCPY operation can be safely canceled. In fact both PCPY operation

need to be removed (PCPY HINT and PCPY FROM).

…

MOV ESI, 0x20000000

PCPY [EDI], ESI

…

PSET [EDI], 0

Case e. is also not critical. There are 2 approaches: Either each read request is forwarded to address

0x20000000 or we will follow steps of case a.

3 Consideration
Both of these operations may be delayed (execute-on-write mechanism) to support faster

transactions especially when multiple page operations are executed instead of direct executing. It is

also uneconomic to use a full associative cache, may be an n-way associative cache is more

appropriate.

4 CPU cache consideration
Since the CPU caches don’t know anything about of these memory controller specific operations,

each cache line corresponding to any of the operation specific addresses has to be invalidated. If we

assume a cache line size of 64 bytes the CPU needs to invalidate 64 cache lines in worst case scenario

for each memory controller specific instruction.

